إشارات الفوركس Settat
- إشارات الفوركس Settat
- إشارات الفوركس Settat: Af41 ثنائي - خيارات
أفضل وسطاء الخيارات الثنائية - العقل السليم | حقائق ومعلومات عامة
الكورس الشامل لتعليم الخيارات الثنائية(قناص الاوبشن)
submitted by goodlove20 to binaryoption [link] [comments]
شرح التداول بالروبوت في بورصة الخيارات الثنائية iQBot
اقوى كتاب في مجال الخيارات الثنائية
Auto QoS Help
I'm currently working on a project where I need to provide network connectivity to a VDI cloud. Currently the network utilizes Auto QoS at the access switch level for the end users. It is recommended to mark the traffic DSCP AF41. I am not sure if Auto QoS will mark this traffic appropriately or if I need to create a custom class-map/policy-map. I need some clarification on this statement in the 9300 documentation
" After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes
AutoQoS in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy map or policer. To use the new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map. " -
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9500/software/release/17-3/command_reference/b_173_9500_cqos_commands.htm So is this saying copy the Auto QoS policy and create a duplicate with my custom class-maps then disable Auto QoS and apply to the interface?
I am very weak in this area, any help is much appreciative.
submitted by NetworkingDudeFTW to networking [link] [comments]
PBX jitter
Hi /networking -
I have an issue that I can't seem to figure out.
I deployed an Allworx PBX (I know, I know) to a customer and now they are experiencing dead air and delays with internal calls only.
A bit about the setup - they have 3 offices all connected via a 25M ISP metro link fiber. Their data network is a stretched L2 /24 spanning across the 3 sites (apparently no pre-planning for growth or a good network design). I have the voice VLAN, also a /24, spanning across the 3 sites with lldp placing the phones in the proper VLAN. The delay/ jitter is really prominent in the main office where there are about 60 handsets. I have 3 Netgear GS728TPP's configured with LAG on the SFP ports up-linking to each other. These switches really only have phones connected with maybe a handful of other devices. I have QoS configured with DSCP to push AF41 and EF to queue 5.
I've monitored the network with PRTG and it doesn't seem like links are saturated. I haven’t found a loop or broadcast storm. I've mirrored all of the ports to Wireshark and captured the packets. Some of the calls the jitter is in the 1000ms range and the audio isn't really there and other calls the users are saying "Hello, hello, hello" but the audio is there on both sides and jitter is normal.
I’ve also swapped the switches for higher end L3 Netgear’s (not sure of model off the top of my head) with the same results.
Any tips and/or suggestions on where I should look to find some answers would really be appreciated!
submitted by gavinporter10 to networking [link] [comments]
Compare configs on re0 to re1
Does anyone have a fast way to compare the configs that are stores on re0 and re1 on a juniper to find the differences? Without just pulling them off and doing a compare in a word pad by chance? Was just looking for other options.
I was thinking you could store them in the tmp dir and just run a diff on the two. Just wasn't sure if there was an automatic way that someone might of thought of right at the cli without saving files.
submitted by Nk4512 to Juniper [link] [comments]
QFX-5200 COS (QOS) help - drops packet no matter what
Hello
Can one of you QOS engineers "un-dumb" me ?
we have a QFX-5200 with HCI cluster (all 100g) and 80G channel uplinks to the "old" core (in migration from cisco N9K to the qfx)
we recently moved the Firewall connection this QFX, there a EX4600 in the middle
so Old core 80g > QFX (with hci direct) > 10g link to ex4600 > 10g link to FW
this 10g link is running at about 1gig all the time during peak hours. so about 10%
the defualt OQS on the QFX was dropping 300-500pps
I put QOS on it and no matter what I adjust it still drops packets.
since it is traffic to the Inet firewall most of it is BE
set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class VOIP-EF loss-priority low code-points cs5 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class VOIP-EF loss-priority low code-points ef set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class CONTROL-CS6-CS7 loss-priority low code-points cs6 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class CONTROL-CS6-CS7 loss-priority low code-points cs7 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class VIDEO-AF41 loss-priority low code-points cs3 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class VIDEO-AF41 loss-priority low code-points cs4 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class VIDEO-AF41 loss-priority low code-points af31 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class VIDEO-AF41 loss-priority low code-points af32 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class VIDEO-AF41 loss-priority low code-points af33 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class VIDEO-AF41 loss-priority low code-points af41 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class VIDEO-AF41 loss-priority low code-points af42 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class VIDEO-AF41 loss-priority low code-points af43 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class DATA-AF21 loss-priority low code-points cs1 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class DATA-AF21 loss-priority low code-points cs2 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class DATA-AF21 loss-priority low code-points af11 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class DATA-AF21 loss-priority low code-points af12 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class DATA-AF21 loss-priority low code-points af13 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class DATA-AF21 loss-priority low code-points af21 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class DATA-AF21 loss-priority low code-points af22 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class DATA-AF21 loss-priority low code-points af23 set groups cos-COS class-of-service classifiers dscp cos-dscp-classifier forwarding-class Best-Effort-0 loss-priority high code-points be set groups cos-COS class-of-service drop-profiles Best-effort interpolate fill-level 98 set groups cos-COS class-of-service drop-profiles Best-effort interpolate fill-level 100 set groups cos-COS class-of-service drop-profiles Best-effort interpolate drop-probability 0 set groups cos-COS class-of-service drop-profiles Best-effort interpolate drop-probability 100 set groups cos-COS class-of-service forwarding-classes class VOIP-EF queue-num 5 set groups cos-COS class-of-service forwarding-classes class VIDEO-AF41 queue-num 2 set groups cos-COS class-of-service forwarding-classes class CONTROL-CS6-CS7 queue-num 7 set groups cos-COS class-of-service forwarding-classes class DATA-AF21 queue-num 1 set groups cos-COS class-of-service forwarding-classes class Best-Effort-0 queue-num 0 set groups cos-COS class-of-service interfaces xe-*/*/* scheduler-map cos-sched-map set groups cos-COS class-of-service interfaces xe-*/*/* unit 0 classifiers dscp cos-dscp-classifier set groups cos-COS class-of-service interfaces ae255 scheduler-map cos-sched-map set groups cos-COS class-of-service interfaces ae255 unit 0 classifiers dscp cos-dscp-classifier set groups cos-COS class-of-service interfaces et-*/*/* unit 0 classifiers dscp cos-dscp-classifier set groups cos-COS class-of-service rewrite-rules dscp Branch-Rewrite forwarding-class VOIP-EF loss-priority low code-point ef set groups cos-COS class-of-service rewrite-rules dscp Branch-Rewrite forwarding-class VIDEO-AF41 loss-priority low code-point af41 set groups cos-COS class-of-service rewrite-rules dscp Branch-Rewrite forwarding-class CONTROL-CS6-CS7 loss-priority low code-point cs7 set groups cos-COS class-of-service rewrite-rules dscp Branch-Rewrite forwarding-class DATA-AF21 loss-priority low code-point af21 set groups cos-COS class-of-service rewrite-rules dscp Branch-Rewrite forwarding-class Best-Effort-0 loss-priority low code-point 000000 set groups cos-COS class-of-service scheduler-maps cos-sched-map forwarding-class VOIP-EF scheduler cos-VOIP-scheduler set groups cos-COS class-of-service scheduler-maps cos-sched-map forwarding-class VIDEO-AF41 scheduler cos-video-scheduler set groups cos-COS class-of-service scheduler-maps cos-sched-map forwarding-class CONTROL-CS6-CS7 scheduler cos-control-scheduler set groups cos-COS class-of-service scheduler-maps cos-sched-map forwarding-class DATA-AF21 scheduler cos-data-scheduler set groups cos-COS class-of-service scheduler-maps cos-sched-map forwarding-class Best-Effort-0 scheduler cos-best-effort set groups cos-COS class-of-service schedulers cos-VOIP-scheduler transmit-rate percent 1 set groups cos-COS class-of-service schedulers cos-VOIP-scheduler buffer-size percent 1 set groups cos-COS class-of-service schedulers cos-VOIP-scheduler priority low set groups cos-COS class-of-service schedulers cos-video-scheduler transmit-rate percent 2 set groups cos-COS class-of-service schedulers cos-video-scheduler buffer-size percent 2 set groups cos-COS class-of-service schedulers cos-video-scheduler priority low set groups cos-COS class-of-service schedulers cos-control-scheduler transmit-rate percent 1 set groups cos-COS class-of-service schedulers cos-control-scheduler buffer-size percent 2 set groups cos-COS class-of-service schedulers cos-control-scheduler priority low set groups cos-COS class-of-service schedulers cos-data-scheduler transmit-rate percent 1 set groups cos-COS class-of-service schedulers cos-data-scheduler buffer-size percent 1 set groups cos-COS class-of-service schedulers cos-data-scheduler priority low set groups cos-COS class-of-service schedulers cos-best-effort transmit-rate percent 95 set groups cos-COS class-of-service schedulers cos-best-effort buffer-size remainder set groups cos-COS class-of-service schedulers cos-best-effort priority low
and what im seeing
Egress queues: 10 supported, 8 in use Queue counters: Queued packets Transmitted packets Dropped packets 0 109550315 109355079 195236 1 316138 316138 0 2 399357 399357 0 3 0 0 0 4 0 0 0 5 1038004 1038004 0 7 833 833 0 8 1 1 0 Queue number: Mapped forwarding classes 0 Best-Effort-0 1 DATA-AF21 2 VIDEO-AF41 3 fcoe 4 no-loss 5 VOIP-EF 7 CONTROL-CS6-CS7 8 mcast CoS information: Direction : Output CoS transmit queue Bandwidth Buffer Priority Limit % bps % usec 0 Best-Effort-0 95 9500000000 r 0 low none 1 DATA-AF21 1 100000000 1 0 low none 2 VIDEO-AF41 2 200000000 2 0 low none 5 VOIP-EF 1 100000000 1 0 low none 7 CONTROL-CS6-CS7 1 100000000 2 0 low none Physical interface: xe-0/0/26:2, Enabled, Physical link is Up Interface index: 653, SNMP ifIndex: 554 Forwarding classes: 12 supported, 8 in use Egress queues: 10 supported, 8 in use Queue: 0, Forwarding classes: Best-Effort-0 Queued: Packets : 117233136 79998 pps Bytes : 169432766982 936969056 bps Transmitted: Packets : 117022062 79746 pps Bytes : 169111887825 933907152 bps Tail-dropped packets : Not Available RL-dropped packets : 0 0 pps RL-dropped bytes : 0 0 bps Total-dropped packets: 211074 252 pps Total-dropped bytes : 320879157 3061904 bps Queue: 1, Forwarding classes: DATA-AF21 Queued: Packets : 339222 201 pps Bytes : 213323209 1471928 bps Transmitted: Packets : 339222 201 pps Bytes : 213323209 1471928 bps Tail-dropped packets : Not Available RL-dropped packets : 0 0 pps RL-dropped bytes : 0 0 bps Total-dropped packets: 0 0 pps Total-dropped bytes : 0 0 bps Queue: 2, Forwarding classes: VIDEO-AF41 Queued: Packets : 430761 300 pps Bytes : 262409561 1547872 bps Transmitted: Packets : 430761 300 pps Bytes : 262409561 1547872 bps Tail-dropped packets : Not Available RL-dropped packets : 0 0 pps RL-dropped bytes : 0 0 bps Total-dropped packets: 0 0 pps Total-dropped bytes : 0 0 bps
so i know the ques look funny but i'm trying everything here. 99% does seem to be um BE
I CAN add another link or make it 40G, but that just moves the issues to the EX4600
im hoping Im just QOS DUMB and am forgetting something or there is something i need to do on the QFX that normal EX do not need
PS: I know the drop profile is not applied, in the past having a drop profile would help in this case it has not helped.
Thank you in advance for you time
submitted by turbov6camaro to Juniper [link] [comments]
How to create floating rules for traffic shaping for MS Teams and VoIP?
I'm trying to set up QoS for MS Teams as well as VoIP (via the media gateway 192.168.1.2).
Media traffic type | Client source port range | Protocol | DSCP value | DSCP class |
Audio | 50,000–50,019 | TCP/UDP | 46 | Expedited Forwarding (EF) |
Video | 50,020–50,039 | TCP/UDP | 34 | Assured Forwarding (AF41) |
Application/Screen Sharing | 50,040–50,059 | TCP/UDP | 18 | Assured Forwarding (AF21) |
Source:
https://docs.microsoft.com/en-us/microsoftteams/qos-in-teams This is what I have come up so far (igb1 is LAN and pppoe0 is WAN):
# pfctl -s rules [...] match on igb1 inet proto udp from 192.168.1.2 to any port 8999 >< 27001 label "USER_RULE: Outgoing SIP (RTC/RTCP)" queue qVoIP match on igb1 inet proto tcp from any port 49999 >< 50020 to any label "USER_RULE: Outgoing Teams Audio" queue(qTeamsAudio, qACK) match on igb1 inet proto udp from any port 49999 >< 50020 to any label "USER_RULE: Outgoing Teams Audio" queue(qTeamsAudio, qACK) match on igb1 inet proto tcp from any port 50019 >< 50040 to any label "USER_RULE: Outgoing Teams Video" queue(qTeamsVideo, qACK) match on igb1 inet proto udp from any port 50019 >< 50040 to any label "USER_RULE: Outgoing Teams Video" queue(qTeamsVideo, qACK) match on igb1 inet proto tcp from any port 50039 >< 50060 to any label "USER_RULE: Outgoing Teams Apps" queue(qTeamsApps, qACK) match on igb1 inet proto udp from any port 50039 >< 50060 to any label "USER_RULE: Outgoing Teams Apps" queue(qTeamsApps, qACK) match on pppoe0 inet proto udp from any to 192.168.1.2 port 8999 >< 27001 label "USER_RULE: Incoming SIP Server (RTP/RTCP)" queue qVoIP match on pppoe0 inet proto tcp from any port 49999 >< 50020 to any flags S/SA label "USER_RULE: Incoming Teams Audio" queue(qTeamsAudio, qACK) match on pppoe0 inet proto tcp from any port 50019 >< 50040 to any label "USER_RULE: Incoming Teams Video" queue(qTeamsVideo, qACK) match on pppoe0 inet proto udp from any port 50019 >< 50040 to any label "USER_RULE: Incoming Teams Video" queue(qTeamsVideo, qACK) match on pppoe0 inet proto tcp from any port 50039 >< 50060 to any label "USER_RULE: Incoming Teams Apps" queue(qTeamsApps, qACK) match on pppoe0 inet proto udp from any port 50039 >< 50060 to any label "USER_RULE: Incoming Teams Apps" queue(qTeamsApps, qACK)
I am seeing activity both for WAN and LAN in Traffic Shaper, but I am not entirely sure which rules are responsible for that. Some of the auto-generated ones e.g. for FaceTime and Teamspeak only have outbound rules with dst ports, so that seems to be actually sufficient to shape both up- and downlink.
In case of Skype/Teams the src ports is non-random, though, so it can be used as identifier, but this is probably wrong/unnecessary in case of WAN.
Will the qACK assignment simply be ignored for UDP rules? I've created these via the UI using the UDP/TCP option which automatically creates one rule for each protocol.
submitted by Jazzlike_Crab to PFSENSE [link] [comments]
Skype for Business Audio Quality
Good Evening all,
I'm looking for some guidance/assistance on getting Skype for business cofigured corretly with in our business.
We are running Skype for business Online, installed locally on client machines.
QoS is in place on our VPLS, dscp with identiefer af31. I've requested for our provider to add af41 as this is missing in their config also.
We are still seeing really bad audio quality accross our sites. This can be anything from the audio dropping for 3-5 seconds too just general bad audio quality (Like talking in a fish tank). During the SFB meeting, it regulary complains about signal quality althought windows is showing full wi-fi signal. We've had a heatmap done across the office and there is no black spots or areas with weak signal.
All of our sites feed into an asa 5516 via our service provider. The ASA is configured with 2 interfaces, inside and outside. All the traffic going out to the internet goes through the ASA. QoS is not configured on the ASA.
Does anyone have any suggestions?
thanks
submitted by kylehadfield1992 to networking [link] [comments]
Different QoS Policies used in Networking Devices
Quality of service (QoS) refers to any technology that manages the different traffic from Data Appkeywordslications, Voice, and Video Applications. We can feel pleasant and fair communications by applying the various parameters of QoS characteristics like Bandwidth, Delay, Jitter, and Loss on a network as following values.
1.) For Voice Applications,
Bandwidth: 384 Kbps to 20+ Mbps
Delay (One-Way):200-400 ms
Jitter: 30-50 ms
Loss: 0.1%-1%
2.) For Video Applications
Delay (one-way):150 ms or less
Jitter: 30 ms or less
Loss: 1%
For achieving these characteristics’ some configurations are done in various networking devices like Switches and routers by using the following tools.
Classification and marking
The classification refers to matching the field in a message to make a choice in order to get QoS actions.ACLs perform the classification and filtering in egress and ingress ports of network devices according to the marking of a packet. The marking is done in DSCP field for the layer 3 header and the COS field in the layer 2 header.
The QoS plan for an enterprise focuses on making classes of traffic that should receive certain types of treatments. It is done by labeling the following packets with a number associated with each class.
- Classify all voice payload traffic that is used for business purposes as IP DSCP EF and CoS 5.
- Classify all video conferencing and other interactive video for business purposes as IP DSCP AF41 and CoS4.
- Classify all business-critical data application traffic as IP DSCP AF21 and
CoS 2.
Queuing and Scheduling
The term queuing defines to the QoS toolset for managing the queues that hold packets while they wait their turn to exit interface routers use a popular tool called Class-Based Weighted Fair Queuing
(CBWFQ) to guarantee a minimum amount of bandwidth to each class. Each class receives at least the amount of bandwidth configured during times of congestion,
- Use round-robin queuing methods like CBWFQ for data classes and for non-interactive voice and video.
- If faced with too little bandwidth compared to the typical amount of traffic, give data classes that support business-critical applications much more guaranteed bandwidth than is given to less important data classes.
- Use a priority queue with LLQ scheduling for interactive voice and video, to achieve low delay, jitter, and loss.
Shaping and Policing
Shaping and Policing measure the bit rate of the traffic flows through a device and measure the number of bits per second overtime. Policers discard the packet and shapers hold the packet in queues to delay the packets to keep the bit rate at or below the configured speed. These tools are most commonly used at the WAN edge in an Enterprise network.
To understand more in-depth and to practice the latest CCNA 200-301 with network automation basics correctly, it is always better to get in touch with the
best CCNA training institute in Kochi or any other major city. You can learn about basics network automation with deep networking concepts in CCNA’s current syllabus 200-301 from the
best CCNA training institute in Kerala.
submitted by STEPS_Kochi to u/STEPS_Kochi [link] [comments]
كسسوارات الهواتف الذكية تستحق ثمنها عصا «سيلفي» وشواحن محمولة وسماعات لاسلكية متقدمة
عصا «سيلفي» وشواحن محمولة وسماعات لاسلكية متقدمة الثلاثاء - 6 ذو الحجة 1438 هـ - 29 أغسطس 2017 مـ رقم العدد [ 14154] 📷 شاحن محمول - عدسة إضافية للهاتف لندن: «الشرق الأوسط»
عندما تشتري لنفسك هاتفاً ذكياً جديداً، كيف يمكنك أن تستفيد من أفضل الميزات التي يقدمها؟ عليك بالإكسسوارات، كما يقول بعض الخبراء. لكل هاتف يمكن للمستخدم أن يشتريه، كثير من الأدوات المضافة التي تحسن الأداء وتتميز عن الإكسسوارات الأخرى؛ ابتداء من تحديثات سماعات الأذنين، ومكبرات بلوتوث للصوت لتعزيز صوت الموسيقى، وانتهاء بالأغطية التي تحمي الهاتف من الأضرار. ولكن يجب أن تحرص أن تكون تلك الإضافات الأحدث، خصوصا أن الخيارات المتاحة كثيرة. وهنا بعض النصائح من موقع «انغادجيت» التقني البريطاني التي ستساعد المستخدم في اختيار إكسسوارات الهواتف الذكية التي تستحق الإنفاق عليها. -
- إضافات التصوير - إضافات السيلفي: تزداد شعبية الصور الذاتية (السيلفي) وصور البورتريه الشخصية أكثر فأكثر، مما حثّ مصنعي الهواتف الذكية على التركيز أكثر على الكاميرات الأمامية، وكانت آخرها كاميرا «هواوي بي10» التي تقدم للعالم أول عدسة «ليكا» للسيلفي في هاتف ذكي. في حال كان المستخدم يملك عصاً للسيلفي، فيجب أن يجرب أداة «ألترا برايت سيلفي لايت»، (27 دولارا)،
Ultra Bright Selfie Light، التي تثبت على أي هاتف ذكي (لها 36 من الصمامات الثنائية الضوئية LED) لتوفير إضاءة أفضل، وإشعاع أفضل لتوفير الوضوح الأكبر للصورة. - عدسات الكاميرا: في حين توفر هواتف متقدمة مثل «سوني إكس زي بريميوم» و«آيفون7» عدسات كاميرا فعالة، لمحبي التصوير الذين يرغبون في الارتقاء بصورهم دون شراء كاميرا باهظة الثمن، فإن بمقدورهم أن يستعينوا بعدسة إضافية. وتوفر عدسة «أولوكليب كور لينس»، (132 دولارا)،
Olloclip Core Lens Set، لهاتف «آيفون7». و«آيفون7 بلاس»، من بينها عين السمكة، والزاوية الواسعة، والعدسات المكبرة في قطعة صغيرة تلتصق فوق كاميرا الجهاز. يذكر أن أصحاب هواتف «آندرويد» و«آيفون» يمكنهم أن يستفيدوا من نسخ مخصصة لهواتفهم. - طابعة الصور: بعد التقاط أجمل الصور، قد يرغب المستخدم في تحويلها إلى صورة عادية للذكرى، بدل تركها منسية في ألبوم الكاميرا أو ألبومات «فيسبوك». هنا يمكنه أن يستفيد من طابعة الجيب التي تأتي بحجم صغير لحملها باليد، بحجم هاتف ذكي تقريباً. من بين هذه الطابعات «إتش بي سبروكيت فوتو برينتر»، (132 دولارا)، التي تتصل بهواتف
«آيفون» و«آندرويد»عبر بلوتوث ويمكن أن تستخدم لإنتاج صور بحجم 2×3 بوصة. -- أغطية وشواحن - أغطية فخمة: كثيرة هي الإكسسوارات التي يختارها المستخدم، إلا أن غطاء الهاتف لا بد أن يكون أولها. وتكثر الخيارات المتاحة من هذه الإكسسوارات؛ من تلك المضادة للمياه، إلى البلاستيكية الشفافة منها. ولكن في حال كان مالك الهاتف يرغب في خيار أكثر فخامة، فيمكنه أن يختار من مجموعة «باستيل»، Pastel Collection، أو تلك المصنوعة من جلد النوبوك من «سنيكهيف»، (28 دولارا)، التي تقدم له ملمسا راقياً دون أن يدفع مبالغ طائلة. هناك أيضاً الأغطية التي تأتي على شكل محفظة تتضمن جيوبا خاصة للبطاقات البنكية، وطبقة قابلة للطي، وهي متوفرة لـ«آيفون» و«آندرويد» بخيارات كثيرة. - شاحن محمول: مع إمضاء الناس مزيدا من الوقت في استخدام هواتفهم، من تحديث «إنستغرام» إلى مشاهدة مسلسلهم المفضل عبر «نيتفلكس»، لا بد أن البطارية لن تخدمهم طويلاً. لهذا السبب، يُنصح المستخدمون بالاستعانة بشاحن محمول. يوفر «إس تي كاي فاست فيول 15كي»، (66 دولارا)، STK Fast Fuel 15K، شحنة هائلة تصل إلى 15 ألف ملي أمبير في الساعة، التي تصلح لشحن الهاتف 6 مرات متتالية. كما تدعي «باكينغ كوالكوم كويك تشارج»،
Packing Qualcomm Quick Charge، للتكنولوجيا أنها قادرة على شحن الهواتف الذكية 4 مرات أسرع ممن الشواحن التقليدية. -
- سماعات ومكبرات - سماعات الرأس: يأتي كثير من الهواتف الذكية الحديثة والغالية مع سماعات الأذنين الخاصة بها. ولكن في حال كان المستخدم من محبي الموسيقى العالية، فلا بد من أنه سيبحث عن إكسسوار أكثر حداثة. هناك كثير من الخيارات المتوفرة التي تناسب محبي الرياضة بسبب مقاومتها التعرق وقدرتها على عزل الأصوات المحيطة خلال الجري أو في وسائل النقل المشتركة. توفر سماعة «أوديو تكنيكا»، (105 دولارات)،
ATH - CKR70iS، نوعية ممتازة للصوت وبسعر معقول. تمتاز هذه السماعة بمسرعات ديناميكية رائعة للصوت، وبميكروفون صغير يتضمن أزرارا لاستقبال وإنهاء الاتصال والتحكم بالموسيقى. - مكبرات الصوت: حتى لو كانت مكبرات الصوت الموجودة في الهاتف جيدة، فإنه مكن للمستخدم أن يقدم لها دعماً، خصوصا في حال كان يحب مشاركة الموسيقى مع أصدقائه. الخيارات الأقوى متوفرة دائماً لإعدادات أكبر كالحفلات. وفي حين أن مكبرا صغيرا للجيب يمكن أن يفي بالغرض، فإن المكبرات الدائرية الصلبة تظلّ دائماً الخيار الأفضل. يتميز مكبر «جي بي إل فليب 4»، (158)، JBL Flip 4، العامل بتقنية بلوتوث، بحجم صغير قابل للحمل، ولكنه يخبئ ميزات صوتية هائلة، بالإضافة إلى 12 ساعة من الخدمة، والأفضل أنه مضاد للماء، مما يجعله مثالياً للحمل إلى جانب حمام السباحة.
اذاكنت تريد باسعار غير قابله للمنافسة سوف تجدها هنا
أضغط هنا submitted by Familiar-Interview89 to u/Familiar-Interview89 [link] [comments]
IOS to JUNOS QoS conversion
Like the title says is there a way convert a QoS configuration from IOS to JUNOS? I'm looking at some guides but JUNOS terms don't seem like they'll give me the same output. I can post what I have in IOS if that helps.
Edit: Adding the configs
IOS on ASR:
class-map match-all C2_VOICE
match ip dscp af47
class-map match-all VOICE
match ip dscp ef
class-map match-all VIDEO
match ip dscp af41
class-map match-all CONTROL_PLANE
match ip dscp cs6
class-map match-all PREFERRED_DATA
match ip dscp af33
class-map match-all SCAVENGER
match ip dscp cs1
policy-map ASR_QOS_POLICY
class C2_VOICE
priority percent 10
class VOICE
priority percent 15
class VIDEO
bandwidth percent 25
class CONTROL_PLANE
priority percent 10
class PREFERRED_DATA
bandwidth percent 25
class SCAVENGER
bandwidth percent 5
class class-default
bandwidth percent 10
JUNOS what I have so far:
set class-of-service forwarding-classes class "class" queue-num "number" # Do this for all classes above
set class-of-service classifiers dscp "classifier name" forwarding-class "class name" loss-priority "priority level" code-points " I'm thinking the needed af value goes here?"
then apply to correct interface?
submitted by jer9009 to Juniper [link] [comments]
QoS / CoS on a L2 switch
We have a L2 switch in front of our ISP demarcation point.
The service is for VoIP, so at layer 3, that's the ISP's issue. Once we mark our RTP traffic as "EF", it is kept as "EF" and everything else is remarked accordingly by the ISP (most just gets re-marked to AF21 and AF41).
What I want to know is, is there anything we need to do with our switch with regards to CoS?
We have policy and class maps on the switch to keep the DSCP markings that are received from the ISP, and to mark our RTP traffic as "EF".
But is this the correct thing to do, or do I need to do more on the switch?
submitted by kaosskp3 to networking [link] [comments]
QoS policy-map on a Cisco ASR sub-interface - question
Hi all. I am trying to understand some QoS configuration on our WAN routers, and came across something that I need help with.
Let me first briefly explain our setup. On a Cisco ASR WAN router, we have a Gigabit Ethernet interface which serves as the hand-off to our MPLS carrier. This interface is divided into multiple sub-interfaces, and each one is a separate logical connection on a different VRF. Each one of the circuits associated to the respective sub-interfaces has a different bandwidth value, as well as different EF protection from the carrier.
So to shape this traffic to the correct bandwidth that we are receiving from the carrier, we use a policy-map and apply it to the sub-interface. Here is both the parent and a single sub-interface configuration:
interface GigabitEthernet0/0/0
bandwidth 400000 no ip address negotiation auto
interface GigabitEthernet0/0/0.100
bandwidth 100000 service-policy output OUTBOUND
Note the bandwidth statement of 400Mbps on the parent interface, versus the value of 100Mbps on the sub-interface.
Okay, so the next part is where my confusion comes from. Look at the policy-map applied to the sub-interface:
policy-map OUTBOUND class class-default
shape average percent 100 service-policy VOIP
policy-map VOIP class VOIP
priority percent 15 set dscp ef
class-map match-any VOIP match ip dscp ef match ip dscp af41
The idea here is that we want to shape the overall traffic to 100% of the bandwidth value of that sub-interface, and then for anything marked with EF or AF41 (VoIP traffic), we prioritize to 15% of that bandwidth, which roughly lines up with the EF value we are paying for.
The problem I see is that the percentage values are not being calculated from the bandwidth statement on the sub-interface, but from the statement on the
parent interface. I confirmed this with a "show policy-map interface Gi0/0/0.100":
GigabitEthernet0/0/0.100
Service-policy output: OUTBOUND
Class-map: class-default (match-any) 1349264663 packets, 354123922072 bytes 5 minute offered rate 284000 bps, drop rate 0000 bps Match: any Queueing queue limit 1666 packets (queue depth/total drops/no-buffer drops) 0/0/0 (pkts output/bytes output) 1349139030/354074925202 **shape (average) cir 400000000, bc 4000000, be 4000000** target shape rate 400000000 Service-policy : VOIP queue stats for all priority classes: Queueing queue limit 512 packets (queue depth/total drops/no-buffer drops) 0/0/0 (pkts output/bytes output) 9649564/2071322004 Class-map: VOIP (match-any) 9649564 packets, 2071322004 bytes 5 minute offered rate 0000 bps, drop rate 0000 bps Match: ip dscp ef (46) Match: ip dscp af41 (34) **Priority: 15% (60000 kbps), burst bytes 1500000, b/w exceed drops: 0**
Note that "shape (average) cir 400000000" is 100% of the parent interface bandwidth statement, not the sub-interface. And for "Priority: 15% (60000 kbps)".... 60000 kbps is also 15% of the parent interface.
The way I understand it, we basically have no QoS with this current configuration. Since we are shaping to values that are much higher than what we actually have. So is there a way to make these percentages refer to the sub-interface? Or do I need to shape to the explicit bandwidth values instead of using a percentage? For example, using "shape average 100000000" in the policy-map instead of "shape average percent 100".
Thanks in advance!
submitted by cosmicastaway to networking [link] [comments]
How to stop auto-generated URL on the website?
submitted by ramDGtalmarktng to bigseo [link] [comments]
QoS drops despite more than sufficient bandwidth in class
Running into a strange issue this morning I'm hoping someone has seen before. I've got a video conference going and that traffic is configured into a high priority class. The class is configured for up to 24Mbps and there's only 10-12Mbps of traffic hitting that class but the class is still showing output drops. Drops are playing hell with video quality. My pre-coffee google-fu is apparently not strong this morning.
Class-map: MPLSCOS2V (match-any) 231993 packets, 257120887 bytes 30 second offered rate 11399000 bps, drop rate 509000 bps Match: ip dscp cs4 (32) 0 packets, 0 bytes 30 second rate 0 bps Match: ip dscp af41 (34) 231993 packets, 257120887 bytes 30 second rate 11399000 bps Queueing queue limit 64 packets (queue depth/total drops/no-buffer drops) 0/4892/0 (pkts output/bytes output) 227103/250838397 bandwidth remaining 60% (24000 kbps) QoS Set dscp af41 Packets marked 231995
Sh int for that interface:
MTU 1500 bytes, BW 50000 Kbit/sec, DLY 100 usec, reliability 255/255, txload 65/255, rxload 158/255 Encapsulation 802.1Q Virtual LAN, Vlan ID 1., loopback not set Keepalive set (10 sec) Full Duplex, 100Mbps, media type is RJ45 output flow-control is unsupported, input flow-control is unsupported ARP type: ARPA, ARP Timeout 04:00:00 Last input 00:00:00, output 00:00:00, output hang never Last clearing of "show interface" counters 00:18:17 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 25723 Queueing strategy: Class-based queueing Output queue: 0/1000/0 (size/max total/drops) 30 second input rate 31032000 bits/sec, 3893 packets/sec 30 second output rate 12774000 bits/sec, 3078 packets/sec 3018352 packets input, 2637599934 bytes, 0 no buffer Received 0 broadcasts (0 IP multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog, 0 multicast, 0 pause input 2555413 packets output, 1616772187 bytes, 0 underruns 0 output errors, 0 collisions, 0 interface resets 0 unknown protocol drops
Policy map:
policy-map AVPN-COS class MPLSCOS1 priority 5000 police cir 5000000 bc 120000 be 120000 conform-action transmit exceed-action drop violate-action drop set ip dscp ef class MPLSCOS2 bandwidth remaining percent 10 set dscp af31 class MPLSCOS3 set ip dscp af21 bandwidth remaining percent 10 class MPLSCOS4 set ip dscp default bandwidth remaining percent 15 class MPLSCOS5 set ip dscp af11 bandwidth remaining percent 4 class MPLSCOS2V bandwidth remaining percent 60 set dscp af41 policy-map AVPN_Ethernet class class-default shape average 45000000 service-policy AVPN-COS
submitted by valherum to networking [link] [comments]
Branch Office 2900 Router - QoS config example
I'm getting started on QoS configs for my branch office sites. These sites use Cisco 2900 series routers with 15.x software, and a downstream 2960x that is marking DSCP values and policing on 1Gbps user access ports. Assume the trunk between the switch and router is a 1Gbps link and DSCP values are trusted The example below is for a site with 30 Mbps WAN connected to a 1Gbps interface on my router. My ISP will honor 4 DSCP values.
With the 2960x access switch I've previously configured, I was able to map certain DSCP values to certain drop thresholds within each queue. I'm believe the "bandwidth percent" commands allocate a portion of the interface's bandwidth to be reserved for a particular class, but should I also try to map specific DSCP values to certain drop thresholds like I did for my switch? Or are there any other best practices I should be looking at implementing? I know there are a ton of options and I'm trying to keep the QoS config simple but effective. I've found some command references and basic config examples that look like the one I posted below.
class-map match-any QOS-REALTIME-CLASS
match ip dscp ef
match ip dscp af41
match ip dscp af42
match ip dscp af43
!
class-map match-any QOS-SIGNALING-AND-CRITICAL-DATA-CLASS
match ip dscp cs6
match ip dscp cs3
match ip dscp cs7
match ip dscp af31
match ip dscp af32
match ip dscp af33
!
Class-map match-any QOS-DEFAULT-CLASS
match ip dscp default
match ip dscp af11
match ip dscp af12
match ip dscp af13
match ip dscp af21
match ip dscp af22
match ip dscp af23
!
Class-map match-any QOS-SCAVENGER-CLASS
match ip dscp cs1
!
policy-map QOS-WAN-OUTPUT-POLICY
class QOS-REALTIME-CLASS
priority percent 15
class QOS-SIGNALING-AND-CRITICAL-DATA-CLASS
bandwidth percent 30
class QOS-DEFAULT-CLASS
bandwidth percent 50
class QOS-SCAVENGER-CLASS
bandwidth percent 5
!
policy-map WAN-OUTPUT-SHAPING
class class-default
shape average 30000000
service-policy QOS-WAN-OUTPUT-POLICY
!
interface Gi0/0
description 30-Mbps-WAN
bandwidth 30000
ip address
1.1.1.1 255.255.255.255 service-policy output WAN-OUTPUT-SHAPING
submitted by mhendr23 to networking [link] [comments]
Microsoft Teams QOS Feedback
I created this QOS for teams and need some feedback.
ip access-list EXTENDED TEAMS-PORTS
20 permit udp any any range 50000 50059
30 permit tcp any any range 50000 50059
exit
class-map match-all TEAMS
Match access-group name TEAMS-PORTS
class-map match-all AUDIO
match ip dscp ef
class-map match-all INTERACTIVE-VIDEO
match ip dscp af41
class-map match-all APP-SHARE
match ip dscp af21
class-map match-all BEST-EFFORT
match ip dscp default
exit
policy-map PER-DEVICE-TEAMS
class TEAMS
trust dscp
exit
class AUDIO
set dscp ef
exit
class INTERACTIVE-VIDEO
set dscp af41
exit
class APP-SHARE
set dscp af21
exit
class BEST-EFFORT
set dscp default
Interface configuration:
service-policy input PER-DEVICE-TEAMS
submitted by Killahb101 to Cisco [link] [comments]
Cisco - Auto QOS causing drops
We received reports of audio issues on voip calls, checking the switch i saw loads of output drops on the uplink (cat9300). When i removed auto-qos trust dscp on this interface the quality degragation stopped.
Checking policymap on the interface i could see drops, but nothing under a specific class, which is weird. All traffic is marked EF. Output is below.
Is there anything else i should be checking? Is this a bug? total traffic was 10mbps on a 10gb link configured at 1gb
#sh policy-map interface te1/1/7
TenGigabitEthernet1/1/7
Service-policy input: AutoQos-ppm-Trust-Dscp-Input-Policy
Class-map: class-default (match-any)
2975974051 packets
Match: any
QoS Set
dscp dscp table AutoQos-4.0-Trust-Dscp-Table
Service-policy output: AutoQos-ppm-Output-Policy
queue stats for all priority classes:
Queueing
priority level 1
(total drops) 40005490
(bytes output) 187971264
Class-map: AutoQos-ppm-Output-Priority-Queue (match-any)
0 packets
Match: dscp cs4 (32) cs5 (40) ef (46)
Match: cos 5
Priority: 30% (300000 kbps), burst bytes 7500000,
Priority Level: 1
Class-map: AutoQos-ppm-Output-Control-Mgmt-Queue (match-any)
0 packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
Match: cos 3
Queueing
queue-limit dscp 16 percent 80
queue-limit dscp 24 percent 90
queue-limit dscp 48 percent 100
queue-limit dscp 56 percent 100
(total drops) 0
(bytes output) 5924
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-ppm-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
Match: cos 4
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-ppm-Output-Trans-Data-Queue (match-any)
0 packets
Match: dscp af21 (18) af22 (20) af23 (22)
Match: cos 2
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-ppm-Output-Bulk-Data-Queue (match-any)
0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
Match: cos 1
Queueing
(total drops) 0
(bytes output) 66
bandwidth remaining 4%
queue-buffers ratio 10
Class-map: AutoQos-ppm-Output-Scavenger-Queue (match-any)
0 packets
Match: dscp cs1 (8)
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10
Class-map: AutoQos-ppm-Output-Multimedia-Strm-Queue (match-any)
0 packets
Match: dscp af31 (26) af32 (28) af33 (30)
Queueing
(total drops) 0
(bytes output) 47124
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: class-default (match-any)
0 packets
Match: any
Queueing
(total drops) 0
(bytes output) 220225
bandwidth remaining 25%
queue-buffers ratio 25
submitted by LittleWanger to networking [link] [comments]
Internet downstream QoS
Due, I suspect, largely to my imprecise language in my
original post, I got mixed feedback. I'll try to rephrase and hopefully clear things up.
EDIT: If I'm wrong, SHOW ME HOW I'M WRONG WITH SPECIFIC EXAMPLES. A drive-by downvote DOES NOTHING to help.
Goal: Ensure bulk traffic cannot consume more than 4% of my downstream link during times of congestion. If not congested, can consume as much of the link as they want. For the sake of example, let's say "bulk traffic" is streaming video, e.g. YouTube.
Siutation: * Cisco ISR * DS3 circuit - WAN interface: Serial0/0/0 * LAN interface: GigabitEthernet0/0
What I understand so far:
- The ISR receives packets from its WAN interface serially (one at a time), and therefore, I have zero control over queueing (the order in which downstream packets arrive at the ISR).
- I is officially The Wrong Idea(R) to perform any traffic shaping on the WAN ingress interface (Se0/0/0).
- All shaping (regardless of interface) should always be done on interface egress, due to egress queues having much more hardware resources available.
What I
think is possible:
- Even though I have zero control over the order in which my WAN interface receives packets, I can choose to drop or queue packets as they egress my ISR, via its LAN interface.
- Selectively dropping TCP packets will invoke its slow start algorithm: "If a loss event occurs, TCP assumes that it is due to network congestion and takes steps to reduce the offered load on the network. These measurements depend on the exact TCP congestion avoidance algorithm used."
- Invoking slow start at the ISR's LAN egress interface will cause the TCP flow(s) to back off their congestion window, until they no longer experience loss.
- This will indirectly reduce the bandwidth load on WAN ingress for these TCP sessions.
- This necessarily frees up WAN ingress bandwidth for other traffic.
- Therefore, it is possible to achieve stated goal above, by applying shaping to those classes of traffic, on the ISR's LAN egress interface (Gi0/0).
If all of the above holds true, here's how I might implement it with minimal config overhead:
- Create class-maps which match both DSCP values and their associated access-lists to classify traffic
- Create a WAN policy-map which both sets DSCP values and applies shaping (CBWFQ and WRED) according to my QoS strategy
- Apply this policy-map to WAN egress (Se0/0/0)
- Nest this policy-map inside another for LAN egress, which shapes bandwidth to match WAN bandwidth. This is necessary to artificially induce congestion, since the LAN egress interface is 1Gbps whereas my WAN is only 45Mbps.
- Apply the second policy-map to LAN egress.
My approach:
- Assume the referenced access-groups are correctly marking traffic for each class.
- Assume I'm also conforming to QoS best practices by doing ingress marking for each class of traffic at the user-facing LAN edge.
- Yes, I know this results in marking WAN egress traffic with DSCP values that my upstream ISP won't honor. I don't think that matters.
Example config:
! class-map match-any VOICE match dscp ef class-map match-any INTERACTIVE-VIDEO match dscp af41 af31 class-map match-any NETWORK-CONTROL match access-group name NETWORK-CONTROL match dscp cs6 class-map match-any SIGNALING match dscp cs3 class-map match-any TRANSACTIONAL-DATA match access-group name TRANSACTIONAL-DATA match dscp af21 class-map match-any BULK-DATA match access-group name BULK-DATA match dscp af11 class-map match-any SCAVENGER match access-group name SCAVENGER match dscp cs1 ! ! policy-map WAN-EDGE class VOICE set dscp ef priority percent 10 class INTERACTIVE-VIDEO set dscp af41 priority percent 23 class NETWORK-CONTROL set dscp cs6 bandwidth percent 2 class SIGNALING set dscp cs3 bandwidth percent 2 class TRANSACTIONAL-DATA set dscp af21 bandwidth percent 33 fair-queue random-detect dscp-based random-detect dscp af23 40 64 random-detect dscp af22 45 64 random-detect dscp af21 50 64 class BULK-DATA set dscp af11 bandwidth percent 4 fair-queue random-detect dscp-based random-detect dscp af13 40 64 random-detect dscp af12 45 64 random-detect dscp af11 50 64 class SCAVENGER set dscp cs1 bandwidth percent 1 class class-default bandwidth percent 25 fair-queue random-detect dscp-based random-detect dscp 0 50 64 ! interface s0/0/0 service-policy output WAN-EDGE policy-map LAN-EDGE class class-default shape average 44736000 service-policy WAN-EDGE ! interface g0/0 service-policy output LAN-EDGE
Will this config achieve the stated goal of ensuring certain traffic (say BULK-DATA) cannot exceed approximately 4% of downstream bandwidth? If not, why not? And what is the correct way to manage donwstream bandwidth when you don't control the upstream nodes?
submitted by austindcc to networking [link] [comments]
Unable to apply outgoing service-policy on Cat 9300
I'm trying to follow the desired QoS config that we received from Ring Central for our access switches. The switches are catalyst 9300 series running IOS-XE Fuji (16.9.3). I'm having problems applying an outgoing service-policy. The error I get is "Missing queueing action in class-default" I don't want to tinker with their config too much, so I'm looking for advice on what I should add to the default class to make IOS happy. I'm tried giving it the remaining bandwidth (bandwidth remaining percent 100) but that didn't help either. Any suggestions?
policy-map PM-OB-All class CM-QoS1 set ip dscp ef priority level 1 percent 25 class CM-QoS2 set ip dscp af41 priority level 2 percent 35 class CM-QoS3 set ip dscp af31 bandwidth remaining percent 10 class CM-QoS4 set ip dscp af21 bandwidth remaining percent 35 class class-default set ip dscp default interface range g/2/0/27-46 service-policy output PM-OB-All "Missing queueing action in class-default"
edit to add other pertinent config:
! outgoing class maps: ! the qos-group is set on ingress by the inbound service policy class-map match-any CM-QoS1 match qos-group 1 ! class-map match-any CM-QoS2 match qos-group 2 ! class-map match-any CM-QoS3 match qos-group 3 ! class-map match-any CM-QoS4 match qos-group 4 ! class-map match-any CM-QoS0 match qos-group 0 ! ! inbound service policy: policy-map PM-IB-User class CM-IB-RC-Voice-RTP set qos-group 1 police 512000 16000 conform-action transmit exceed-action drop class CM-IB-RC-Video-RTP set qos-group 2 police 768000 8000 conform-action transmit exceed-action set-dscp-transmit dscp table TM-Exceed-Map class CM-IB-RC-GeneralSIP set qos-group 3 class CM-IB-RC-Meetings-Control set qos-group 3 class CM-IB-RC-Other set qos-group 4 class class-default set qos-group 0 !
submitted by canexan to networking [link] [comments]
Natalie http://www.blogger.com/profile/10574284953074202623 [email protected] Blogger 110 1 25 tag:blogger.com,1999:blog-1310331563942169905.post ... دسكب af41 للتجارة الثنائية. انها تسمى الآن دس ديفيرنتياتد سيرفيسز المجال و 6 بت العليا تحتوي على قيمة تسمى نقطة رمز الخدمات دسكب متباينة مع...
[index]
[9525] [12160] [1680] [2270] [7622] [4309] [11436] [982] [5405] [14543]
#
test2